

ACSP

Connecting educators,
researchers and students

Association of Collegiate
Schools of Planning

浙江大学
ZHEJIANG UNIVERSITY

Greening the Gap: Examining Urban Greener in Shrinking Cities

- A case of Pittsburgh City

Xuanyu Zhou
Zhejiang University
xuanyu.zhou@zju.edu.cn

Mingze Chen
The University of British Columbia
mingzec@student.ubc.ca

Xuanyu Zhou

Undergraduate Student in Urban and Rural Planning
College of Civil Engineering and Architecture
Zhejiang University
xuanyu.zhou@zju.edu.cn

What's Shrinking Cities?

Urban shrinkage a significant **decline** in a city's population

- Economic decline
- Increased poverty and inequity
- Strain on infrastructure and services
- Environmental concerns

Urban shrinkage is becoming increasingly **common**

- 5,004 shrinking cities were identified worldwide up to 2019
- These cities are primarily clustered in EU, Eastern Asia, and the northeastern US
- China has the highest number of shrinking cities, totaling 679

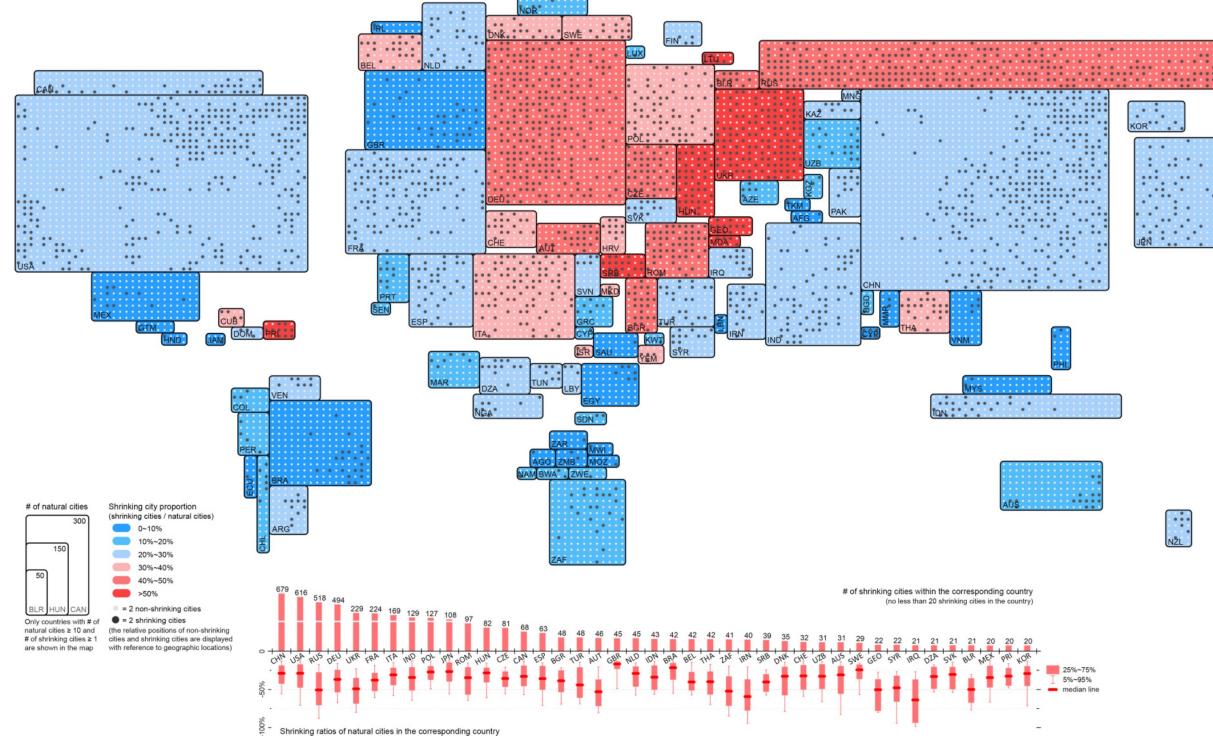


Fig.1 Flat cartogram of the spatial distribution of shrinking cities (SCs) on the globe and the SC proportion at the country level (Meng et al., 2021)

Brief Introduction to Pittsburgh City

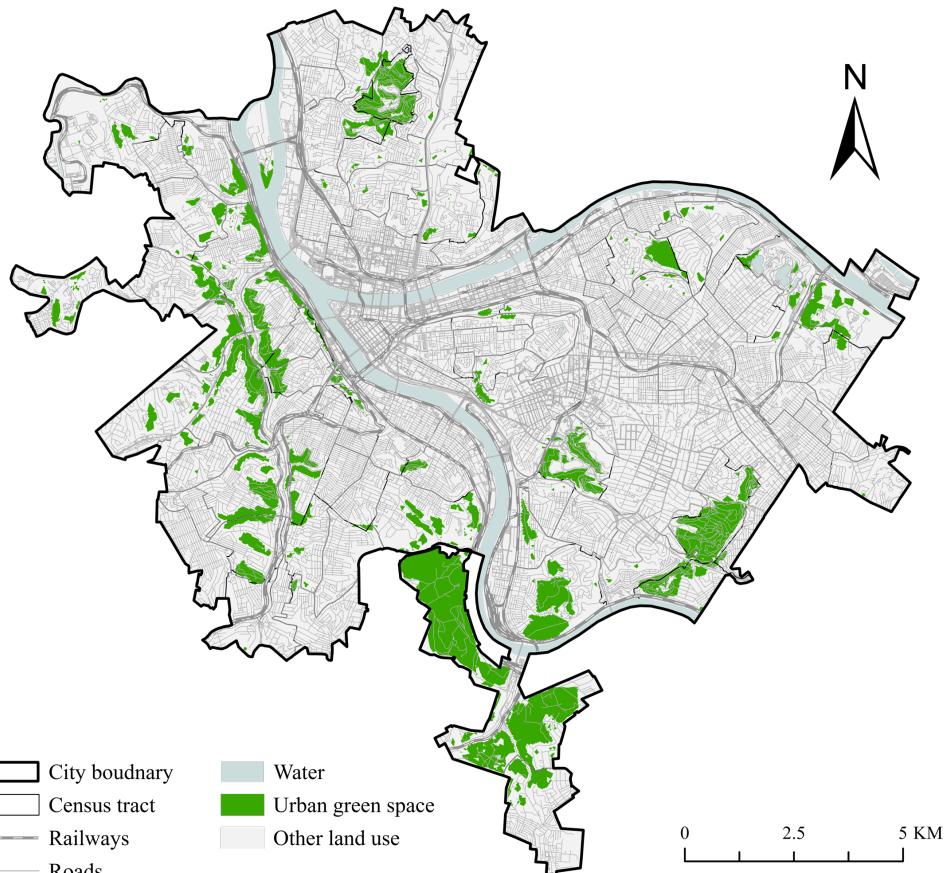


Fig.3 Location, urban context, and UGS distribution of Pittsburgh

- **Population Decline:** Continuous decrease from 1960 to 2022
- **Recent Decline Trends:** Average annual rate of **-0.42%** (2000-2022), about **-0.85%** (2010-2020)
- **Demographic Composition:** Predominantly White (64.5%), significant Black/African American (23.2%), with Asian (5.6%) and Hispanic/Latino (3.6%) minorities

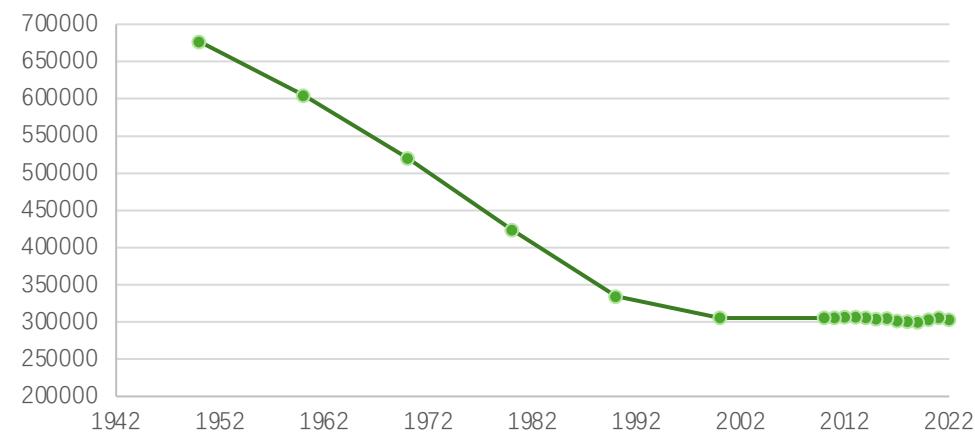


Fig.4 Population of Pittsburgh since 1950

- 1. Factors affecting UGS changes in shrinking cities?**
- 2. Role of UGS in community revitalization?**

What's Urban Green Space in Pittsburgh?

Challenges for UGS in shrinking cities

- Deteriorating urban infrastructure (Mullenbach et al., 2021)
- Inadequate maintenance of UGS (Sakamoto et al., 2018)
- Unequal distribution of UGS (Chen et al., 2023)
- Inefficient use of UGS (Park et al., 2020)

Kinds of parks in Pittsburgh City

- Regional Parks (1,920 acres in total)
- Community Parks (300 acres in total)
- Neighborhood Parks
- Riverfront Parks

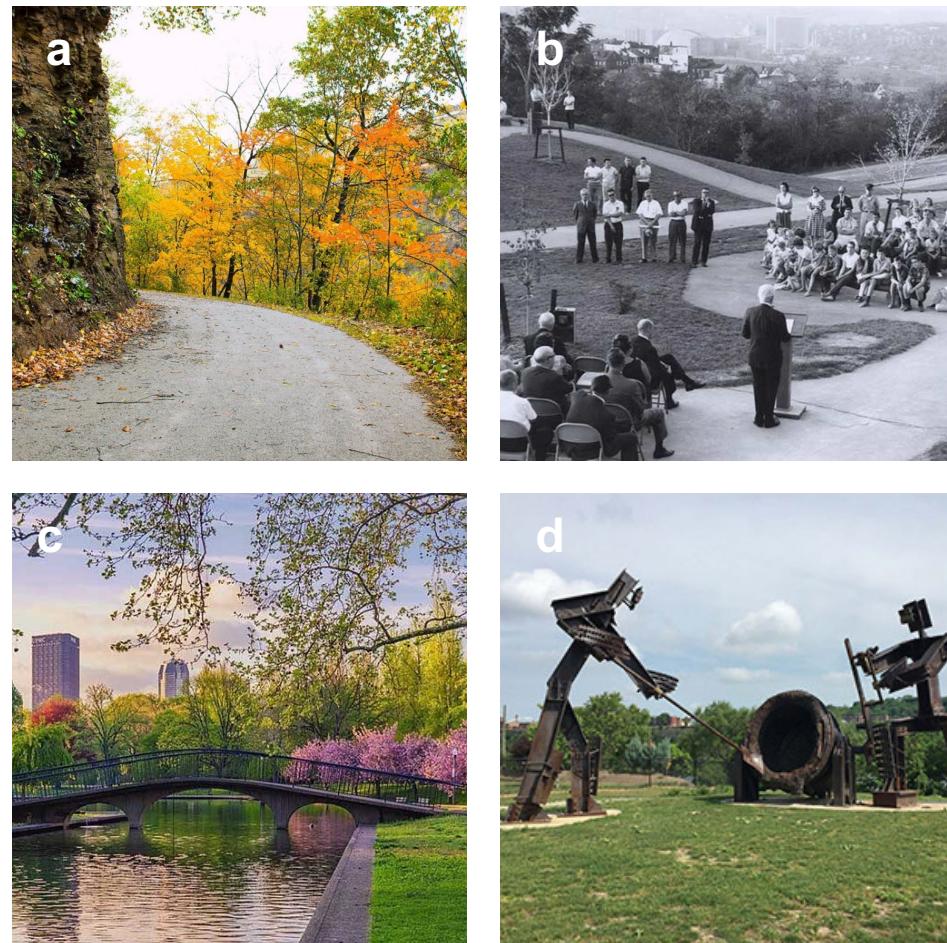
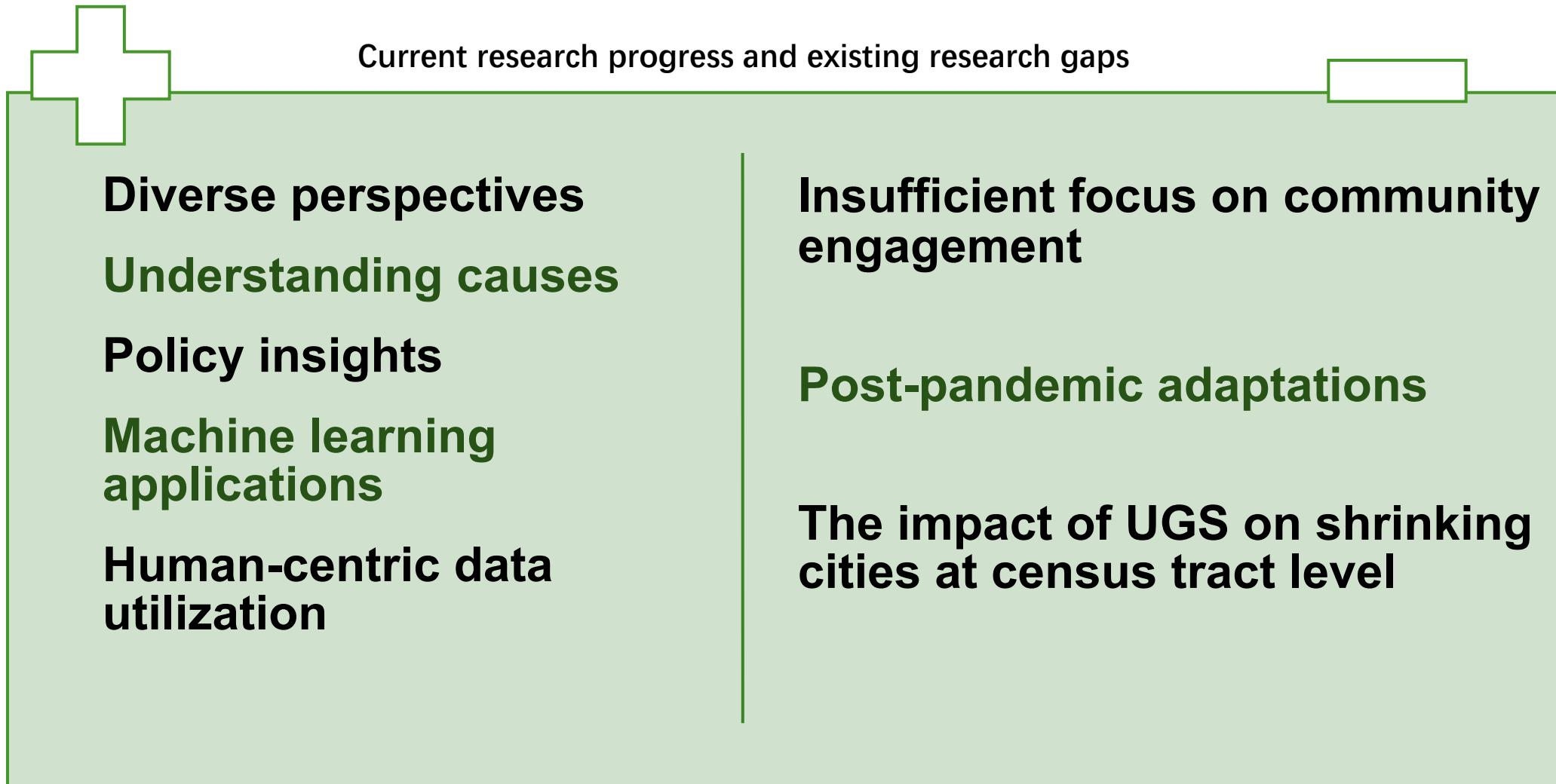


Fig.2 Different kinds of parks: (a) Frick Park, (b) South Side Park, (c) Allegheny Commons Park, and (d) South Shore Riverfront Park.



Research Workflow

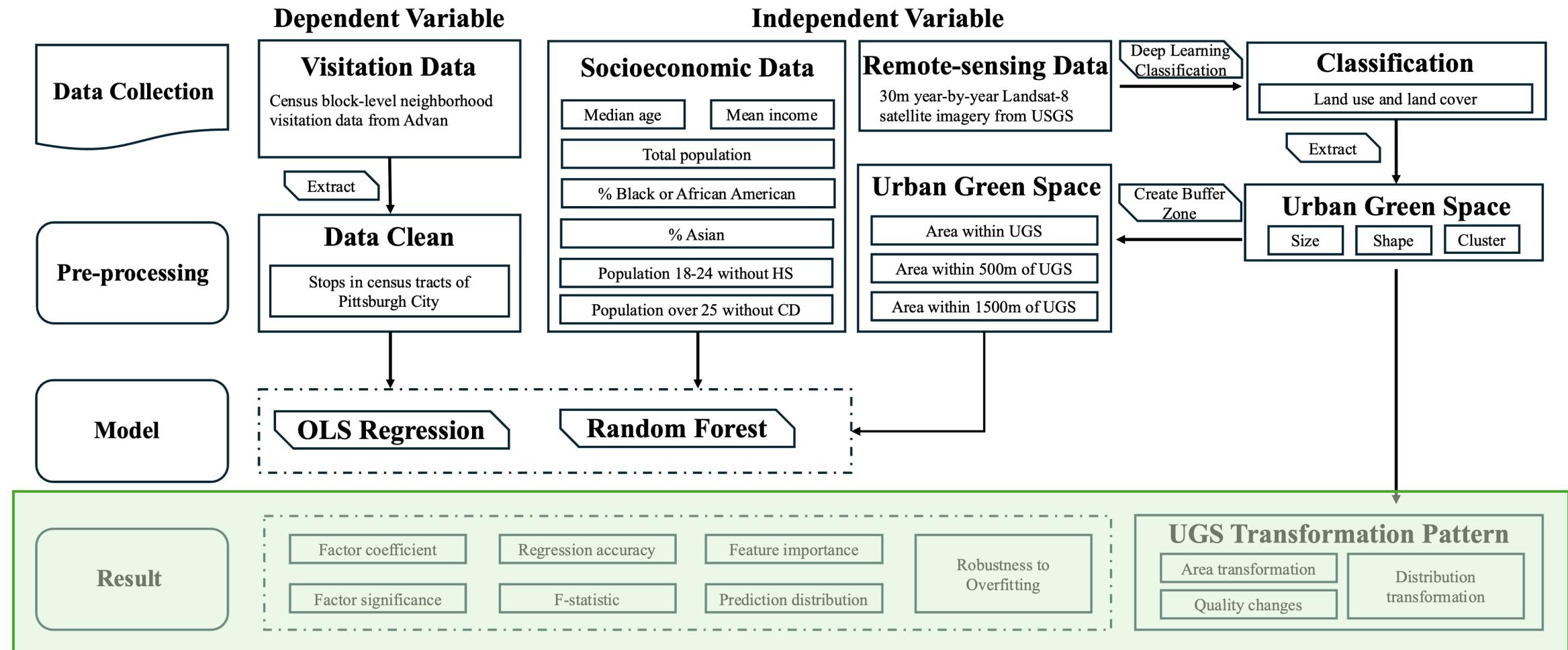


Fig.7 Research workflow for this study

American Community Survey (ACS)

Use POI's geometry

No filtering data

Differential privacy

Land Use data from USGS
(Landsat-8 at 30meters level)

Social and economic data from Census Bureau
(at census tract level)

Visitation data from ADVAN Neighborhood Pattern

(at census block group level every week)

This data is ideal for site-selection use and other use cases where you need to understand **how** busy an area is, **when** it is busy and the **demographics** of the visitors.

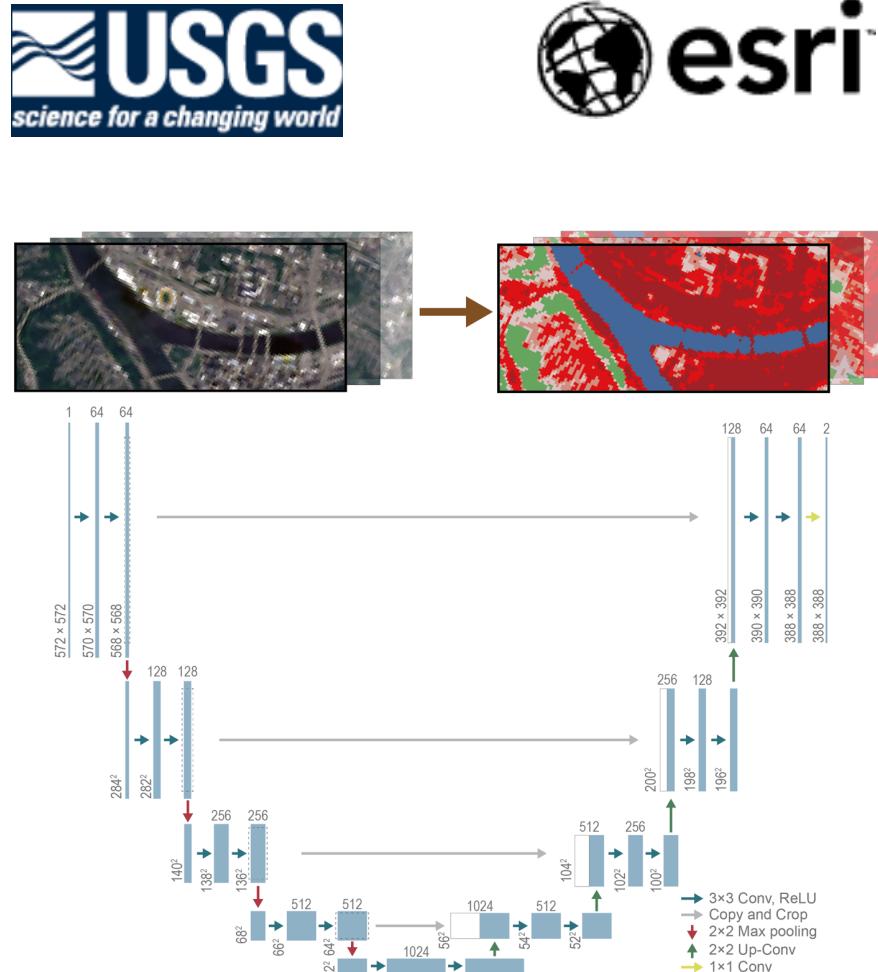


Fig.5 U-net model used in ML classification tasks

Why Using Landsat-8?

- Increased data acquisition
- Enhanced imaging capabilities
- Wide range of applications
- Quality control band

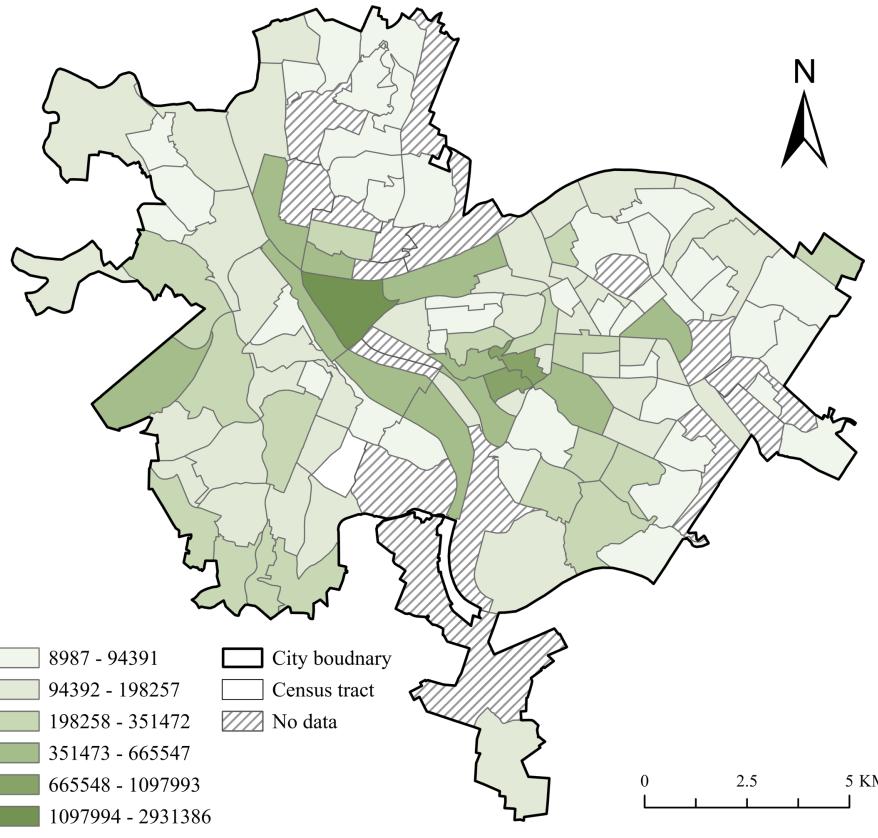
Why Using Land Cover Classification (Landsat 8) from Esri?

- Rich data sources
- Reliable classification results
- Low computational demand
- Easy to deploy

Census Tract Fine-grained Data

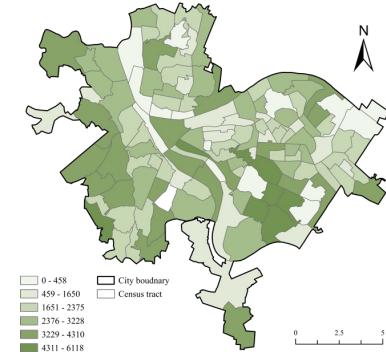
Y

Visitation

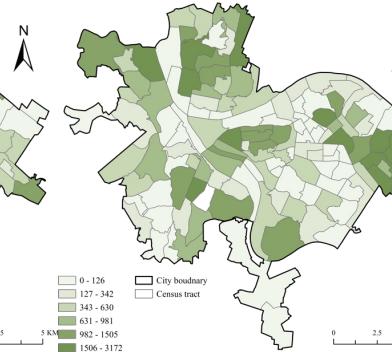


X: social-economic data

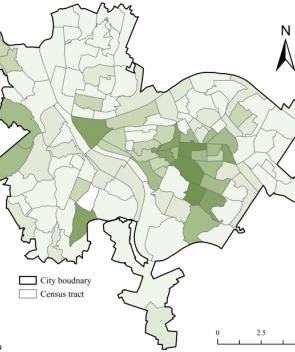
Total population



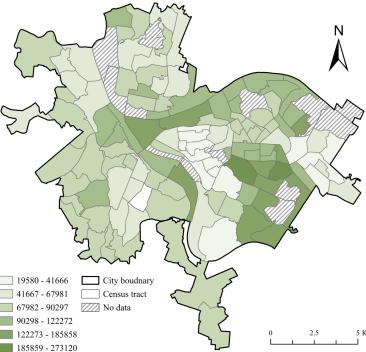
Black & African American



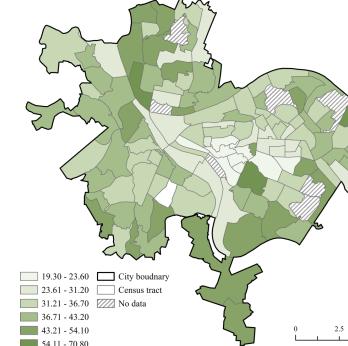
Asian



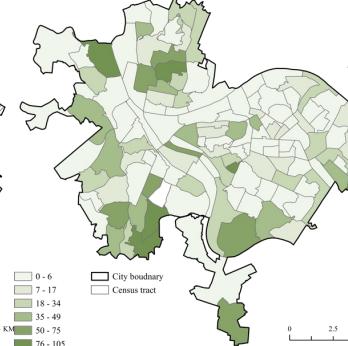
Mean income



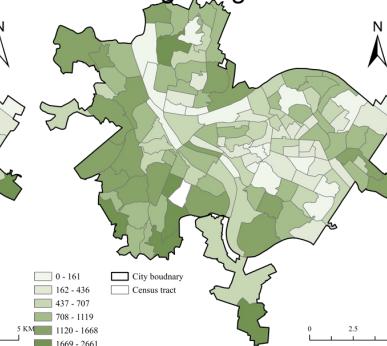
Median age



Population 18-24 without high school



Population over 25 without College Degree



Sex ratio

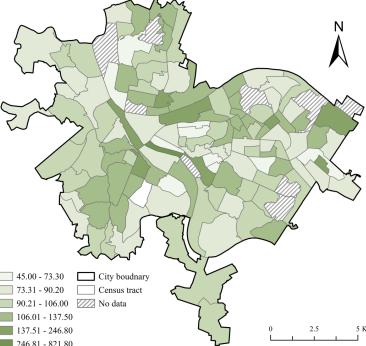


Fig.6-1 Spatial distribution of variables used in OLS regression

Census Tract Fine-grained Data

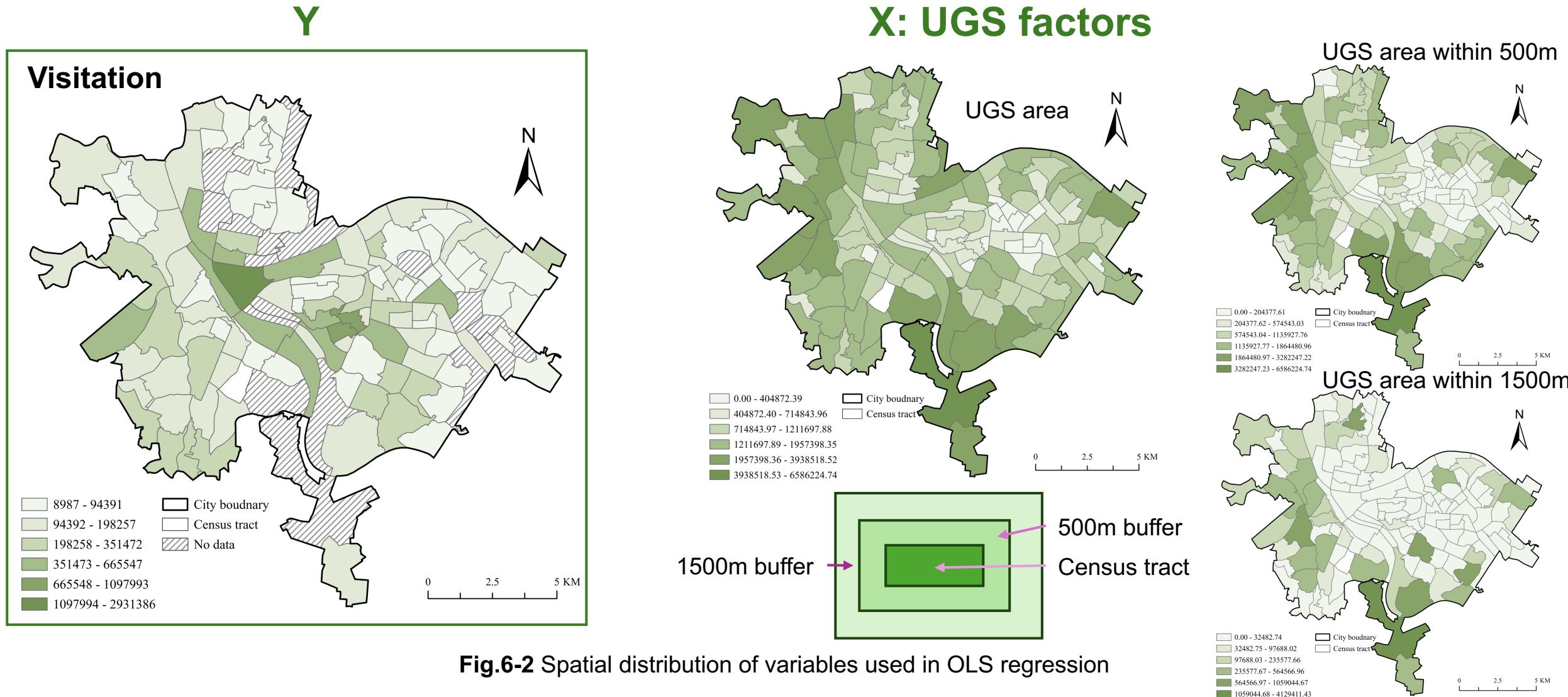


Fig.6-2 Spatial distribution of variables used in OLS regression

UGS Transformation Results

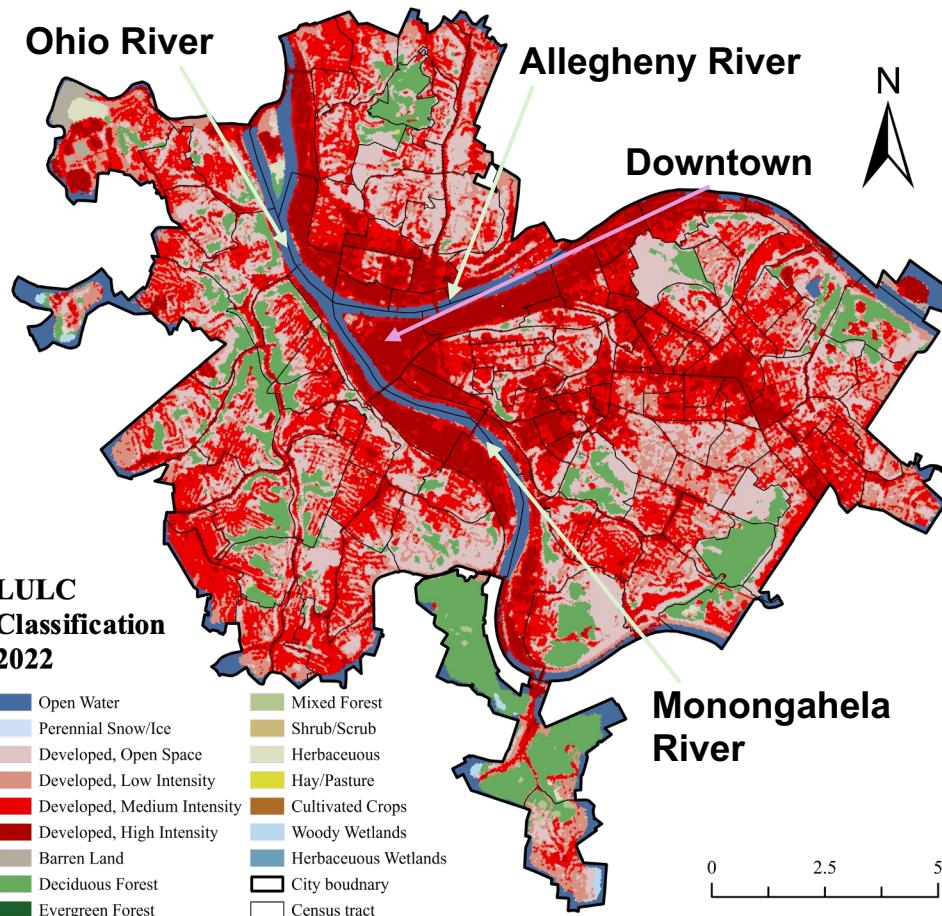


Fig.8 Land Use classification

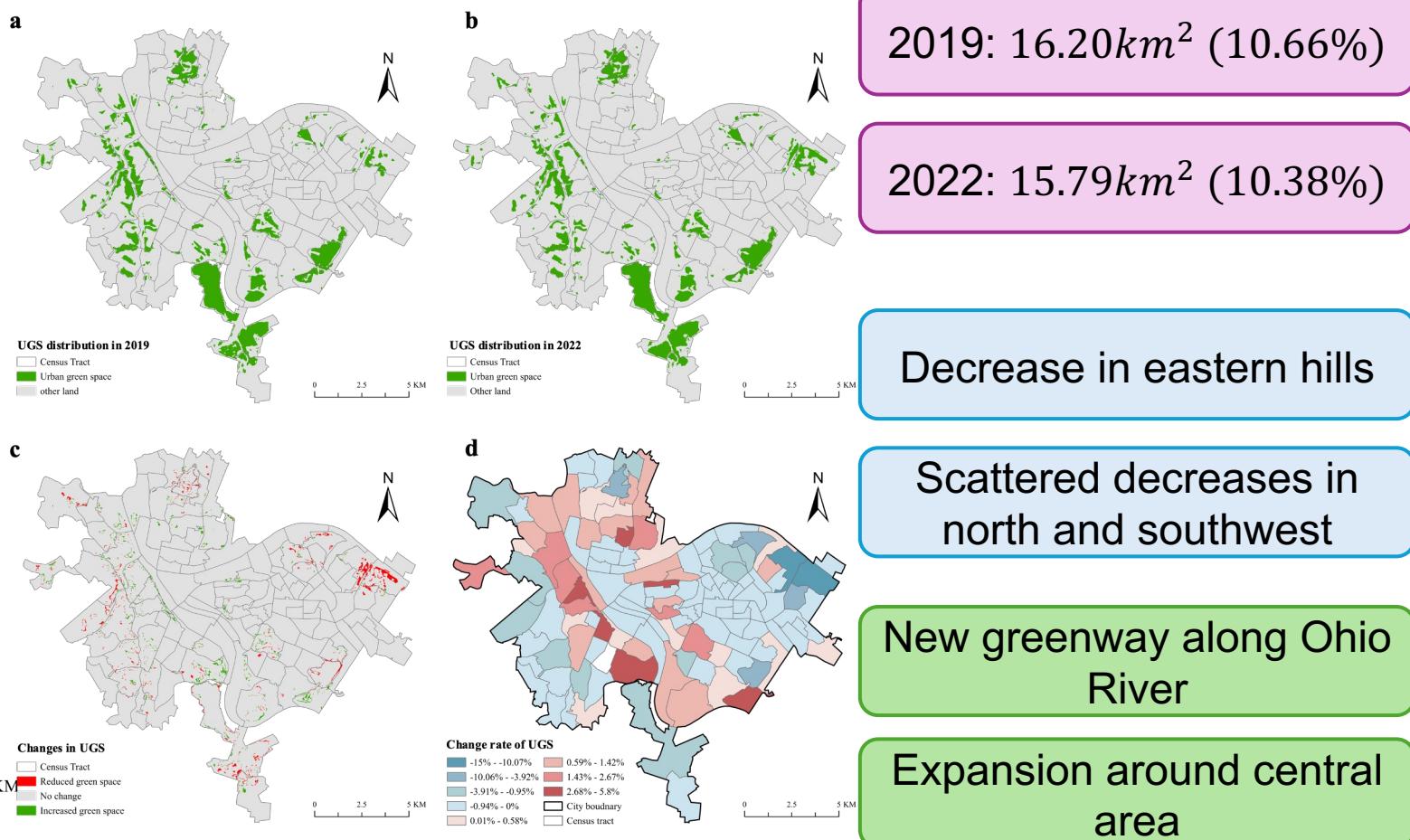


Fig.9 (a)Urban green space in 2022, (b)Urban green space in 2019, (c) change and (d) its change rate by census tract

OLS Regression Findings

Positive Correlations

- Total population
 - Except for 2021
- UGS area within 1500m
- Population over 25 without College Degree
 - Only in 2019

Not Significant

- Median age
- Mean income
- Sex ratio
- Racial
- Population between 18-24 without high schools

Negative Correlations

- UGS area within 500m
 - Especially in 2019 & 2022

Tab.1 Result of OLS Regression

	Coef	2019		2020		2021		2022	
		P > t	VIF	P > t	VIF	P > t	VIF	P > t	VIF
Total Population	297.042	0.001**	3.989	70.0953	0.024	4.511	48.609	0.120	4.441
Median age	-4703.112	0.601	1.949	-1115.556	0.677	1.894	-2644.589	0.350	1.790
Mean income	-2.442	0.218	2.196	-0.842	0.227	2.544	-0.327	0.629	-1.7151
Sex ratio	-2550.199	0.380	1.208	-316.110	0.725	1.181	151.403	0.855	1.126
Black and African American	13.647	0.903	1.686	-15.717	0.674	1.534	-16.790	0.621	1.484
Asian	-380.443	0.149	2.368	-19.202	0.833	2.449	67.737	0.481	2.320
Popu 18-24 without HS	-1237.094	0.586	1.635	-669.129	0.303	1.264	-495.394	0.403	1.142
Popu over 25 without CD	-473.632	0.018	4.118	-108.176	0.108	4.519	-70.351	0.265	4.040
Sum_area_500	-0.497	0.008*	7.292	-0.152	0.010*	6.756	-0.105	0.075	6.092
Sum_area_1500	0.495	0.001**	4.757	0.189	0.000**	4.871	0.138	0.002*	3.976
Sum_area	0.418	0.435	3.310	0.044	0.799	3.080	0.058	0.746	3.216

$$r^2_{2019} = 0.342$$

$$r^2_{2020} = 0.554$$

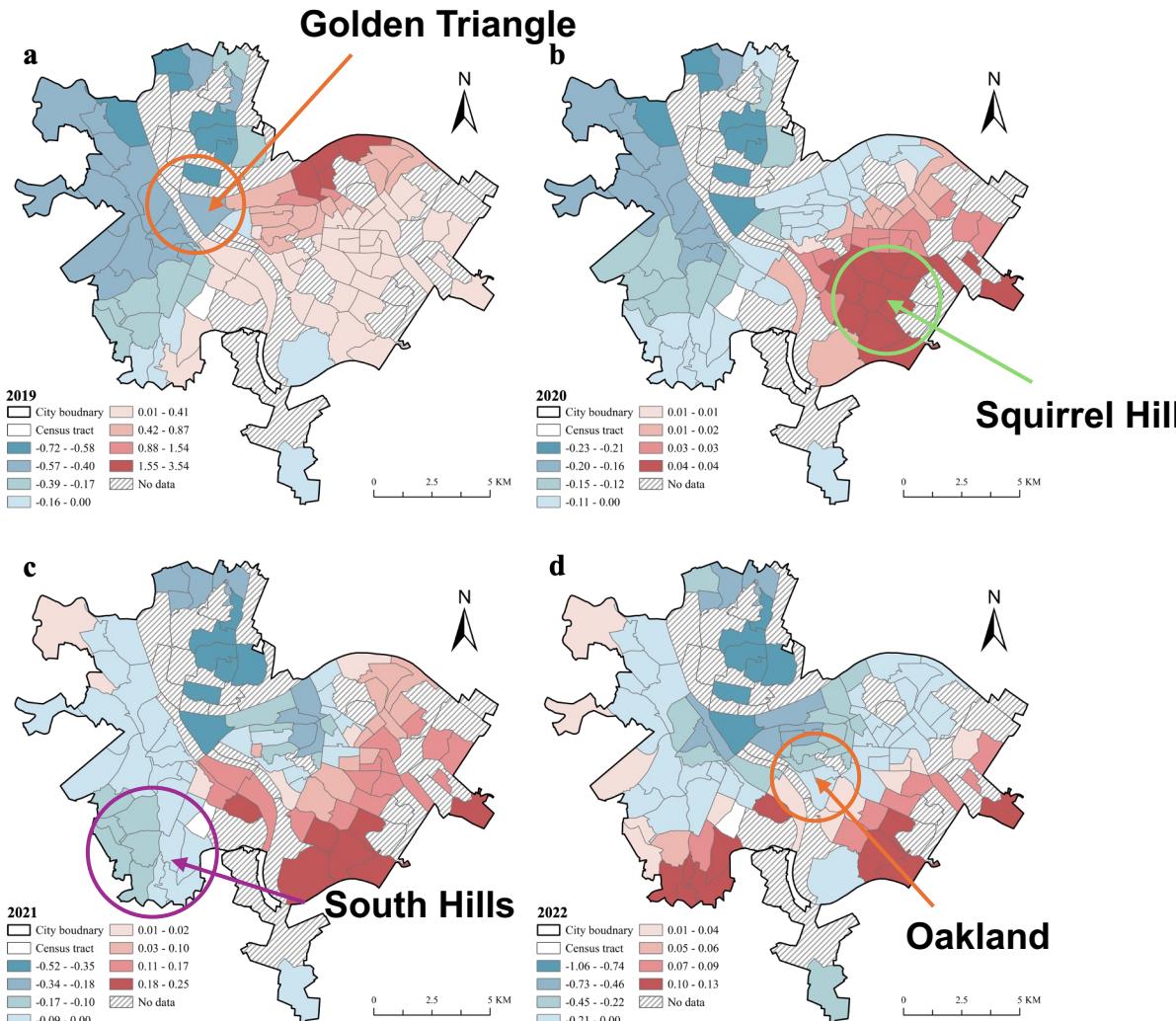
$$r^2_{2021} = 0.305$$

$$r^2_{2022} = 0.334$$

WHY?

In the stereotype, the larger the UGS surrounding a census tract, the more it is expected to be visited, as there are green areas nearby.

GWR Analysis: Green Inside Census Tract



- **Central & Northern Districts**
 - Negative influence of UGS area on visitation, most pronounced downtown (the Golden Triangle)
- **East Districts**
 - Positive influence, intensifying near urban periphery (e.g., Squirrel Hill South)

Yearly Trends

- **Urban Population Decline**
 - Expands negative UGS-visitation correlation.
- **East District Shift**
 - Positive (2019) to negative (2022) in Oakland, impacting major institutions.
- **Southern Hills (Brookline, Carrick, Overbrook)**
 - Cyclical trend; positive in 2019, negative 2020-21, returning to positive in 2022.

GWR Analysis: Green around Census Tract

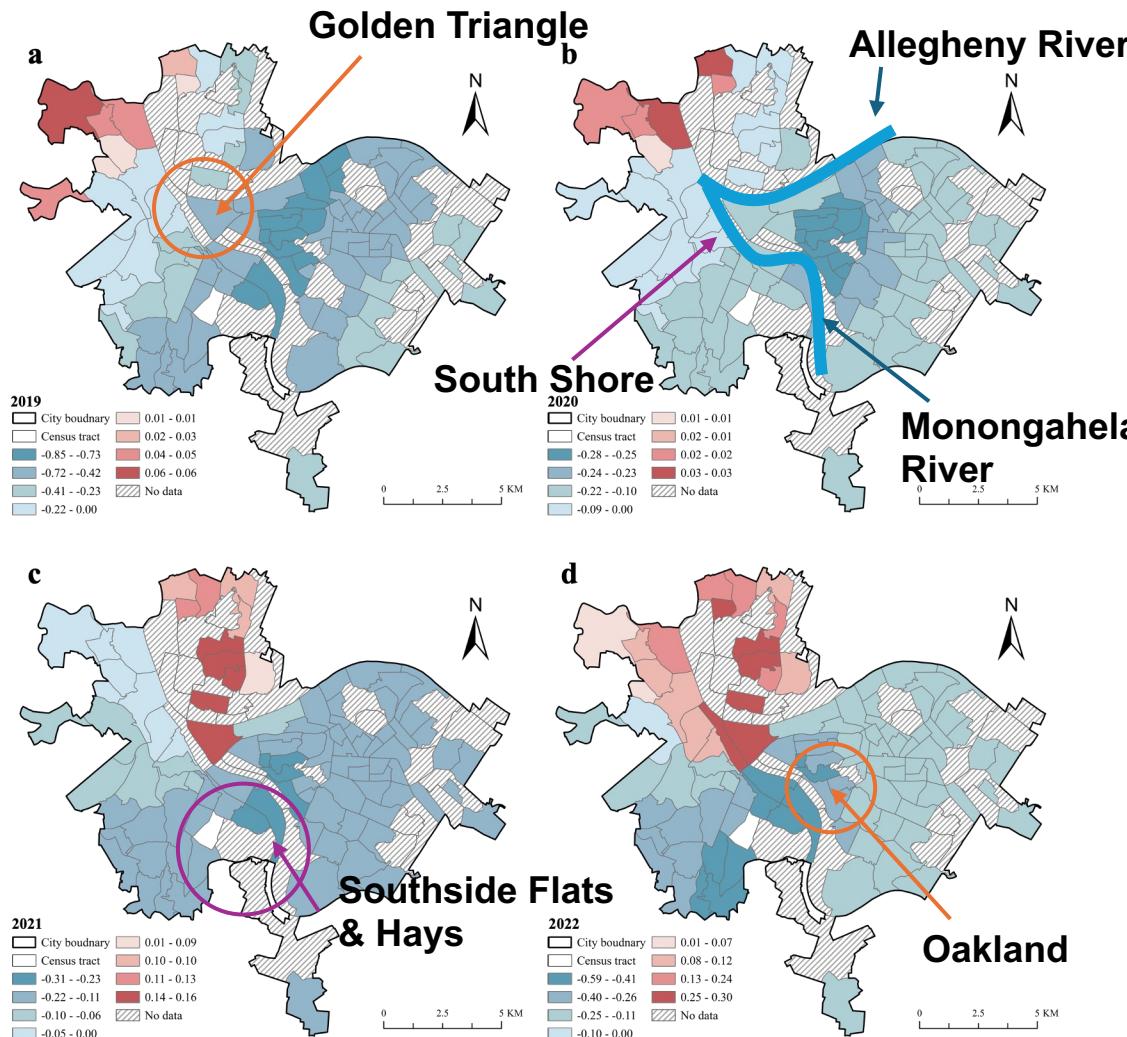


Fig.11 Regression coefficients for visitation and UGS area with a 500m radius of census tract of the GWR

Spatial Trends

- Negative Correlation
 - Expands negative UGS-visitation correlation
- Shift Over Time
 - Transition from negative to positive correlation in **downtown** and north of the Allegheny (low-density areas like Manchester and Troy Hill).
 - **South Shore:** Renewal efforts see shift from negative to positive correlation (RiverParc by Pittsburgh Cultural Trust).

Consistent Patterns

- **Oakland (education/healthcare hub)**
 - Maintains strong negative correlation, unaffected by population trends.
- **Southside Flats & Hays**
 - Similar stable negative correlation, especially in non-residential zones (entertainment/agricultural areas).

Why UGS in 500m radius lead to decrease in visitation?

Competition for commercial land?

Functional redundancy?

Population dispersion effect?

Safety concerns?

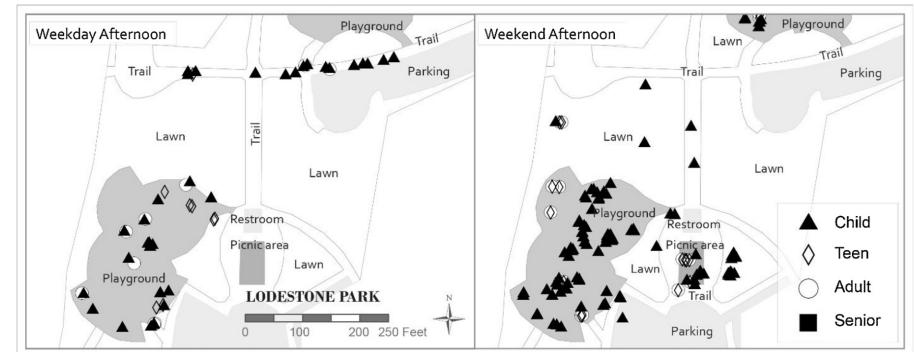


Fig.12 A comparison of behavior maps between different days of a week (Park et al., 2020)

BUT GWR shows UGS within 500m in CBD has **positive** influence on vitality

What's the impact of COVID-19?

- Strong **positive** correlation between total population and visitation rates
- Higher population density corresponded with increased community activity

Pre-pandemic

During pandemic

Post-pandemic

The relationship between population and visitation rates became statistically **insignificant**

- Social distancing measures
- Remote work adoption
- Closure of public spaces
- Restricted social interactions
- Decreased intra-community population mobility

Return of positive correlation between population and visitation rates

- Widespread vaccine availability
- Relaxation of preventive measures
- Gradual resumption of community activities

Influence of UGS Distribution on Community Vitality

- Within census tract
- **500m radius**

Impact of COVID-19

- Positive correlation between population and visitation
- This link became non-significant during the pandemic

Land Use Types and Visitation

- Commercial Districts
- Education and Healthcare Hubs
- Residential Areas

UGS planning amid Urban Shrinkage

- UGS planning can counteract urban shrinkage by enhancing community vitality

Key References

Chen, J., Kinoshita, T., Li, H., Luo, S., Su, D., Yang, X., & Hu, Y. (2023). Toward green equity: An extensive study on urban form and green space equity for shrinking cities. *Sustainable Cities and Society*, 90, 104395. <https://doi.org/10.1016/j.scs.2023.104395>

Meng, X., Jiang, Z., Wang, X., & Long, Y. (2021). Shrinking cities on the globe: Evidence from LandScan 2000–2019. *Environment and Planning A: Economy and Space*, 53(6), 1244–1248. <https://doi.org/10.1177/0308518X211006118>

Mullenbach, L. E., Stanis, S. A. W., Piontek, E., Baker, B. L., & Mowen, A. J. (2021). Centering environmental justice: Gentrification beliefs, attitudes, and support of park development in a shrinking city. *Landscape and Urban Planning*, 216, 104253. <https://doi.org/10.1016/j.landurbplan.2021.104253>

Nesbitt, L., Meitner, M. J., Girling, C., Sheppard, S. R. J., & Lu, Y. (2019). Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. *Landscape and Urban Planning*, 181, 51–79. <https://doi.org/10.1016/j.landurbplan.2018.08.007>

Park, K., Christensen, K., & Lee, D. (2020). Unmanned aerial vehicles (UAVs) in behavior mapping: A case study of neighborhood parks. *Urban Forestry & Urban Greening*, 52, 126693. <https://doi.org/10.1016/j.ufug.2020.126693>

Sakamoto, K., Iida, A., & Yokohari, M. (2018). Spatial patterns of population turnover in a Japanese Regional City for urban regeneration against population decline: Is Compact City policy effective? *Cities*, 81, 230–241. <https://doi.org/10.1016/j.cities.2018.04.012>